Dynamic Modeling of the Correlation Smile

Alfred Hamerle and Christian Scherr

Abstract We discuss the equity-based pricing of CDX tranches withstractural
dynamic approach and focus on the valuation impact of génsodel specifica-
tions. Therefore, we examine the influence of market dyngid@syncratic jumps,
loss term structures and portfolio heterogeneity on themgiof tranches. The re-
sulting spread deviations are quantified through impliedtetations because this
scales premium payments across all tranches to a compérabland, in addition,
enables reliable inferences on the meaning of the discusede| features.
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1 Introduction

The recent debate on the relative pricing of equity and treski markets (see [7, 8,
9, 14, 16]) raises the issue of the extent to which the apptiedels themselves drive
the published results. In particular, this emerges all theerwith respect to the large
variety of proposed models and corresponding findings. Atrairway to address
this topic seems to be a comparison of different valuatichn&ues by referring
to a homogenous set of input data. However, this in fact lelsause even within a
certain class of model type the number of parameters andImodgonents turns
out to be significantly different. Concerning structurapegaches, one might deal
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for example with static models, comprising only a sparselmenof parameters (see
e.g. [8]), or adopt fully dynamic techniques with dozens afiables as in [7].

Because of these differences, we restrict ourselves touatstal dynamic ap-
proach and examine the impact of general model specifictonthe pricing of
credit derivatives, such as the inclusion of idiosyncritiaps. In this sense, we pro-
ceed similarly to [1], who quantify the effects of ignoringnpirical regulatories on
the valuation of CDO tranches. Their aim, however, is défeérbecause they wish
to explain the appearance of the so-called correlationes(age also [2, 11, 17]),
which proves the poor reliability of the standard one-faGaussian copula model.
In addition, all proposed techniques are of static natutereas our analysis refers
to a basic approach that already captures the most imp@mapitical phenomena
and thus serves as a reference for measuring the impact efajenodel specifica-
tions.

To set up the basic approach, we adopt the structural modehtlg proposed by
[10]. Using CAPM-like techniques, they introduce a simpyaamic model to over-
come the main disadvantages associated with purely difftisased techniques. In
addition to a component that depicts continuous changeg,dtso include jumps
to capture discontinuous information. Hence, our basicehoaointains the most im-
portant characteristics that, according to [7], a reli@gproach should offer. Firstly,
it is intended to be fully dynamic, which is accomplished Iefidition because we
are dealing with a time-continuous stochastic processor&hy, the model must
not be exclusively based on a diffusion motion because #aidd to the so-called
predictability of default, and thus short-time spreadsobee vanishingly low (see
e.g. [19]). Due to the presence of jumps, our approach ismaéamnger of exhibiting
these disadvantages.

To quantify the impact of different model specifications, eanpare the corre-
sponding risk premiums to those of our basic approach. Heryéwe spread rates of
different tranches are generally of a different scale, &nd tif measured in absolute
values, slight deviations in the equity tranche acquirelmmore weight than large
deviations within the senior tranches. To avoid such effegé adopt the concept of
implied correlations because, as a consequence, quotes$ ue same magnitude
and spread deviations become comparable. Thus, we evahgateviations with
respect to our basic model and report the pricing effect al@ehohanges in terms
of implied correlations.

The proposed model changes are chosen in such a way as tovprisseanalyti-
cal tractability of the different approaches. For exampieadd idiosyncratic jumps
to the asset value process. Analogously to the idiosymod#fiusion motion, these
depict changes in firm value that are not influenced by the @@@omomic dynamics
but reflect information causing discontinuous movementsugial topic within our
analysis is the weight we assign to these idiosyncratic gibgrause this directly
influences the magnitude of correlation among the asseteimbdeled reference
pool. Correlation matters, because it affects the ternharsal distribution of the port-
folio, which in turn influences tranche prices. For examfléhere is a significant
number of scenarios in which the portfolio loss is close tmzthe equity tranche
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can survive, at least in part. Hence, the spread rates dfyetganches decrease. For
senior tranches, things are different. Increasing the aiviiby of extreme losses
entails the eventuality of subordinated capital being @ipat completely and also
senior tranches getting hit. Because spread rates reflpet&d losses, premium
payments have to increase. A decreasing correlation redheeincidence of ex-
treme events and the loss distribution becomes more cehntégea consequence,
equity tranches often suffer substantial losses and hawedfeo high spread pay-
ments. Conversely, senior tranches are hit sparsely asdottly have to yield low
premiums on the notional.

However, if the correlation were the only quantity deterimintranche prices,
dynamic models would not yield significant advantages indbetext of model-
ing credit derivatives because terminal distributions @s® specified by propos-
ing static models. Yet, static models have a tremendousldisgage: they cannot
describe the evolution of portfolio loss dynamics over tirviet, these are also es-
sential to evaluate the loss dynamics of tranches. The teahgoowth of tranche
losses affects the spread rate of a tranche because sprgadnia always refer to
the remaining notional. If tranches are likely to suffedg&rsses, spread rates have
to rise in return for missed payments. Senior tranches grected to have very low
losses, and therefore the explicit loss dynamics shouldsigmificantly influence
the associated premiums. This changes, however, as onesitihweegh the capital
structure down to the equity tranche. Due to its positiois #xhibits maximum
sensitivity to early defaults in the portfolio. This motiga our quantitative analy-
sis, which determines the extent to which loss dynamicserutiderlying portfolio
influence tranche prices.

Besides idiosyncratic jumps and loss dynamics, there apentare topics we
wish to discuss in the course of this paper, namely the mgasfiarket return
dynamics and the homogeneity assumption. Whereas theredsuta about the
influence of equity dynamics, a clear economic theory onfgaict of the homo-
geneity assumption is missing. Therefore, our empiricalyis is also intended to
yield new insights into this topic.

Accordingly, the remainder of the paper is organized a®¥adl In Section 2, we
provide a brief overview of credit derivatives and some itetan the correlation
smile. The mathematics of the market as well as the asset dginamics are dis-
cussed in Section 3. In the context of the model analysisepted in Section 4,
we quantify the impacts of the proposed model changes. Algsion is given in

Section 5.
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2 Credit derivatives and correlation smile

2.1 Credit derivatives

2.1.1 CDS indices

Analogous to equity indices, comprising a certain numbeistotks, CDS in-
dices represent a portfolio of credit default swap congralet the empirical sec-
tion of this article, we focus on the CDX North American Iniraent Grade index
(CDX.NA.IG), which aggregates 125 equally weighted CDStrats, each written
on a North American investment grade name. There are savettairities of this
index, namely 1, 2, 3, 4, 5, 7 and 10 years, whereby the cdntiitit the five-year
horizon offers the highest degree of liquidity. The CDX.INAis revised every six
months on March 20 and September 20, the so-called roll d@teshese dates,
both defaulted as well as illiquid names are replaced. &iril a CDS contract, the
issuer (protection buyer) has to pay quarterly spread pr@sito the investor (pro-
tection seller). In the case of default, the latter is oldige render compensation
for the loss caused by the defaulted company. In generalldks, also referred to
as Loss Given Default (LGD), is a firm-specific, stochastidalde. For reasons of
simplicity, here we fix the LGD to the standard value 08.0As a further conse-
quence of default, the notional value of the contract is ceduby a factor 01%5,
disregarding the actual loss. In a risk-neutral environimire spread rate of this
contract is given by

_LGD-3lye ™ P(a<n<t)

s:
PAED WYY e "L P(h > )

1)

Here, Aj :=t; —tj_1 denotes the time period between two subsequent payment
datesy the risk-free interest rate arglthe default time of reference name

2.1.2 Index tranches

By dividing their capital structure, CDS indices are alsedifo create structured
finance securities, called index tranches. These trancitkgé a vertical capital
structure on the index and are specified by the covered loggra tranche be-
gins to suffer losses as the portfolio ldssexceeds the attachment poimntand its
notional is completely wiped out if the portfolio loss inases beyond the detach-
ment pointB. For example, the CDX.NA.IG has the tranches 0-3% (equiyj%
(mezzanine), 7-10%, 10-15%, 15-30% (senior) and 30-100pe(senior). The
spread rate of a tranche is given by
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where the loss profile of a tranche follows
¢ . min(B,L) —min(a,Ly)
Lopi= B a 3

2.2 Correlation smiles

In the context of modeling credit derivatives, the oneda&aussian copula model
is similar to the Black-Scholes approach for the pricing pfians. Hence, it does
not come as a surprise that there is also a phenomenon, ttaledrrelation smile,

that corresponds to the empirically observed volatilitylem

2.2.1 Volatility Smile

The famous Black-Scholes pricing formula owes its poptyarainly to the fact
that, based on the intuitive Brownian motion, [4] elabodage analytical formula
for the pricing of European options, including the contenapy stock prices, the
strike levelK, the maturityT, the interest rate and the volatilityo of the under-
lying asset. WhereaS, K, T andr are explicitly observable quantities or param-
eters characterizing the proposed contract, the volathin, at best, be estimated.
In turn, only the volatility parameter is available to catthe results within the
Black-Scholes model. Given the market price of a completelcified European
option, one can fit the Black-Scholes model to this quote mosing the (unique)
volatility that yields the desired value. If the Black-Stdsmodel could completely
describe market dynamics, all the (implied) volatilitieswd be identical across
different maturities and strike levels. Yet, these voldg are not generally con-
stant but yield patterns that resemble smiles or skews tfqaloagainst the strike
level or maturity. This suggests that the Black-Scholesehidnot suited to repli-
cate option prices. However, the general popularity of thiglel is testified by the
fact that it is market convention to quote option prices imig of implied volatility.
This fictive number, placed in the “wrong” Black-Scholesnfmila, by construction
reveals the predefined value and therefore offers an atieenaay to report prices
of options.
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2.2.2 Correlation Smile

Within the Gaussian model, there are only two parametetsémebe used to control
the model's features, namely the default bartheand the homogenous asset return
correlationp. It is a general convention to fix the default barrier suct thea model
spread matches the empirically observed index spread. Assequencey is the
only parameter affecting tranche prices, and the marketaspof a fixed tranche is
replicated by evaluating the level of the generic or impleedrelation that yields
this spread. For a given set of tranche prices on an arbitfayy this procedure
is expected to reveal five different correlation$he resulting confliction can be
resolved simply by realizing that the one-factor Gaussigputa model does not
offer a reliable description of the pooled assets (see 20j).[However, analogous
to the Black-Scholes model, the Gaussian approach alss @ffeanalytical formula
for the valuation of tranchéswhich in turn explains its popularity and the fact that
tranche spreads are also quoted in terms of implied cowekat

3 Asset value dynamics

3.1 General model features

With respect to our basic asset pool model, we specify thevalme dynamics to
satisfy the stochastic differential equation stated by:[12

NT(D)
; (Vai — 1)1 4)

Hence, three basic components control the evolution of gpenyis asset value re-
turn: the drift component, the diffusion motion and the jupgst. The drift rate is
specified by(r — Aada), which contains the risk-free interest rate as well as time-co
pensator that accounts for the expected drift caused bythp process. Continu-
ously occurring changes are depicted by the Brownian ddfug;B,(t). The jump
part specifies systematic jumps to which all companies ggesed. The number of
these jumps is denoted INZ(t) and follows a Poisson process with the intensity
Aa. The random numbevy,;, i € {1,...,NJ'(t)}, is characterized by the density of
its logarithmic version

Yai i=In(Vaj) (5)

that follows an asymmetric double exponential distribaitio

i (Y) = p-me MWl-0+q-n2€?1y0, N1>1nN2>0 (6)

1 Super-senior tranches of the pre-crisis CDX.NA.IG are commasgumed to be (almost) risk-
less and thus omitted from our analysis.

2 For technical details, we refer interested readers to [18].
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Therefore,p,q > 0, p+ g = 1, define the conditional probabilities of upward and
downward jumps. Becaude]'(t) andVa; are stochastically independent, the pro-
cess

NZ'(t)
Cl(t) := (Vai—1) @)
a i; a,l
is a compound Poisson process, with expectation
P anz
E[CD(t)] = Aat -1 8
Pl = et (P24 T2 ) @

Performing calculations in the context of exponentializ models, one generally
refers to logarithmic returns because these can be treaiezlgasily. Applying b's
Lemma to

X(t) == In[A®)] )

yields
0.2 Na (t)
X(t) = (r - 7a - Aa(a) t+ 0aBa(t) + Z Yai (10)
i=

Without loss of generality, we assurAg= 0, and hence the logarithmic retuxrt)
is given by a standardévy process that comprises continuous as well as discontin-
uous movements.

3.2 First passage time distribution

In modeling credit risk, dynamic approaches are usuallgifipd as first passage
time models. This concept was introduced by [3] and accoiantthe fact that a
company can default at any time during the credit period. fadle is triggered
the moment the asset value touches or crosses some predidiiaedt boundary,
which represents the company’s level of liabilities. Thetfgassage time is de-
fined mathematically as follows:

T:=inf{t|A <D} = inf{t|X < b} (11)

Here, D denotes the default barrier aibdts logarithmic version. Because in our
model setting the loss dynamics are determined solely bgéfeult dynamics, the
distribution of the first passage time, according2y is crucial.

There are only a few types of processes that offer an analiytiknown distribu-
tion of . For example, this pertains to the standard Brownian mati@hspectrally
negative levy processes. The Kou model applied in this paper alsorfeain ana-
lytically known distribution of the first passage time, asfiolated by [13] and [15].
For a comprehensive summary of the (technical) details gfex interested readers
to [18].
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The analytical nature of the proposed first passage time heoddbles a very
fast (numerical) determination of loss dynamics and, basdtiese, the company’s
spread rate. In turn, given a quoted spread rate, the ctidibraf a homogenous pool
can be conducted by a numerical optimization algorithm,tdube linearity of the
expectation operator. If there were no analytically knovistribution, calibration
would have to be done by simulation techniques, which, desipé rapid growth of
computational power, are still very time-consuming ana at&y potentially yield
biased results. This especially appears over the coursderided time periods as
well as processes with jumps ([6, 13]). Therefore, the diwty of our modeling
approach, enabling unbiased and fast evaluations at firnpautfiblio level, consti-
tutes a major advantage of the presented approach.

3.3 Integration of market risk

3.3.1 Modeling equity dynamics

Besides analytical knowledge about the first passage tistakdition, there is an-
other important feature of the Kou model, namely the cldeedt option-pricing

formula. Extending the classical Black-Scholes approft®] calculated an ex-
plicit pricing function for European options where the urigieg equity dynamics
are given by

@ = (r — As(s) dt + 0s0Bs(t) +d

St-)

Analogous to the asset value model, the random nudbet € {1,...,Ns(t)}, is
characterized by the density of its logarithmic version

Ns(t)
3 e 1>] (12

Y&i = In(V&i) (13)
that also exhibits an asymmetric double exponential tstion:

fy, (y) = p- &6 W10+ q- E6P1y0, E>1,6>0 (14)

Hence, the pric€ (K, T) of a European call option written on an equity asset that
follows (12) can be evaluated as a function of the strike lé¢ednd the maturity
T:3

1 ~
C(KvT) = Y(r + EO-SZ 7ASZS) 037/\37 p7 51752; In (K) 7T>
(15)

1
—Kexp(—rT)- Y(r - 5052 — AsCs, 05, As, P, €1, €2;In (K) 7T>

3 The explicit functional dependence is stated in [18].
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where

P&
1+4s &4 -1

If we specifyS(t) to reflect the dynamics of an equity index, for example the S&P
500, and use this index as a proxy for the market dynamicdptfaaithmic market
returns are also given by a double exponential jump-diffugirocess. By calibrat-
ing these equity dynamics to market data, given a figgdwe can ascertain the
unknown parameter values of the jump part. Following [13§,ahoosers = 0.1.

G=&-1 &=&+1, As=2As({s+1) (16)

ﬁ:

3.3.2 Coupling equity and asset dynamics

In our asset value model, the diffusion paramedgras well asA,, are used to
set up the coupling between market and asset dynamics. dbieg reflects the
notion that companies are exposed to both market and idioatjo risks. Whereas
market risk simultaneously influences the evolution of athpanies in a portfolio,
idiosyncratic risks independently affect firm values. Atlog this basic idea of the
CAP-model, we specify the asset value diffusion to follow tharket diffusion up
to a factorB. Additionally, we introduce an independent Brownian moti}, to
depict the continuous evolution of idiosyncratic risk. Shthe asset value diffusion
is given by o

OaBa = BOsBs+ 03B, ~ A (0,0%) (17)

Here, we made use of the fact that the superposition of irnttkgye Brownian mo-
tions again turns out to be Brownian.

With respect to the jump part of our firm value model, we appé/parameters
andés to specify the corresponding asset value dynamics. Duesttatt that jumps
in the firm value are caused exclusively by jumps in the equiibcess, we fix the
jump rateA, to be equal tods. However, the jump distribution must be different
because within our approach the level of debt is assumed mwbstant, which
in turn reduces the effects of discontinuous movements enntlarket value. We
account for this fact by adopting tiffactor introduced above and define

Yai =B Ys] (18)

Applying the transformation formula, it is easy to show ttias way of proceeding
preserves the distribution characteristic and thus prowése consistent with the
given firm value dynamics. Furthermore, the distributionapaeter ofY,; can be

evaluated as follows: 1
Na= Efs (29)

reflecting, on average, the damped amplitude of jumps. Fsores of simplicity,
we restrict ourselves to the limiting casegpf 1, concerning both asset and equity
dynamics. Thus, we defimg, := n; andés := &».
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4 Model changes and correlation smiles

4.1 Data description

The database for our analysis relies primarily on quotesibee offered in addition
to the publication of [8] and are available at the webpagdefaublishing journal.
These quotes comprise data on five-year S&P 500 index optapmead rates of
the five-year CDX.NA.IG and associated tranches as wellnas-tiongruent swap
rates. The swap rates are also offered by www.swap-ratasaod used as risk-free
interest rates. The time series cover the period from Sdgpe?, 2004 to Septem-
ber 19, 2007, which corresponds exactly to the duratiorodesf the CDX.NA.IG
Series 3 through Series 8. In addition, the data on S&P 50&xigtions provide
daily information on option prices with respect to 13 diéfet strike levels and also
report the time series of the S&P 500 index level.

4.2 Basic model

For the purpose of calibrating our basic model, we utilizegs of S&P 500 index
options and spread rates of the five-year CDX.NA.IG that vebserved on Febru-
ary 6, 2006. We choose this date because within our analysigish to analyze the
pricing impact of model changes with respect to a common etakvironment.
On average, the pre-crisis spread rate of the five-year CBXG\can be calculated
to about 45 bps (the exact mean value amounts 1874bBps), which, for example,
was the market quote on February 6, 2006. In addition, this daalso located in
the center of our time series.

To calibrate our market model, we must back out the optimilevaf (As, &s).
Because all the other input variables required for the pgicf options are known,
namely the contemporary index level, strike price, interage and maturity, we
perform a numerical optimization procedure that minimittes sum of in-sample
quadratic pricing errors:

13 ,
& (As, &s) 1= ZI [PI (As, &s) — PI} (20)

whereP, denotes the model price aithe corresponding empirical value. As a
result of this procedure, we obtain

(As,&8)ope := (0.125,2.91) (21)

which is used to determine the model implied volatility skemown by the solid
line in Figure 1. This curve, as well as the market-impliedhatitties, marked by

4 According to [7] and [8], we specify Series 3 through 8 to repre the pre-crisis period.
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Fig. 1:Implied volatility o; of the market model
The solid line shows the resulting function extracted from-fyear S&P 500 index
option prices (marked by the crosses). All values are quioteércent.

the crosses, are plotted against the moneynessrgwehich we define by

m: S (22)

On average, the relative pricing error amounts 8006, which emphasizes the
high fitting quality of the chosen market model, relying oatytwo degrees of free-
dom. Concerning the pool model, we chogse- 0.5 ando, = 0.2 to capture the
main results of a corresponding survey performed by [7]hls tegard, the sparse
number of parameters constitutes a further advantage adgunoach because be-
sides(As, Es)opt we only have to determine the logarithmic default boundafhis
can be done by evaluating the (unique) zero of

'(b) -5 (23)

wheres™ denotes the model implied spread rate ahdhe empirically observed
index spread of the CDX.NA.IG on February 6, 2006. A simplmetical procedure
yieldsb = —1.141, which completes our setup.

4.3 Market dynamics

The basic concept of our pricing model refers to the notiantite common dynam-
ics of asset values are affected only by the temporal ewrluf the corresponding
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equity market. In this context, predefined changes in the&ketatynamics are in-
tended to have a similar impact on the model implied spretss$ réf, for example,
the risk neutral probability of negative market stateseases, premium payments
on senior tranches are supposed to rise. By contrast, doptices imply a signif-
icant incidence of positive market states, equity spreagiexpected to fall.

Here, we analyze the pricing impact of market dynamics by#dg the couples
of jump parameters that imply the minimum and maximum as agthe 25%, 50%
and 75% quantile of the terminal logarithmic return vareicour time series:

VIn(Sr)] = 02T + 22—1 (24)
S

We use the resulting parameters to specify our asset valgelnfioesides the de-
fault boundary, we keep all the other parameters fixed) anfdpe a recalibration

to match the target value of 45 bps. Accordingly, a furtheraatage of our mod-
eling approach emerges. Given the numerically determiedaldt barrier, we can
prove the reliability of simulated tranche spreads bec#us@pplied Monte Carlo
techniques must also yield the desired index level. Otlerywgomputational efforts
have to be increased to avoid biased results. We use the edbgpiead rates to
back out the implied correlations within the Gaussian maahel depict the result-
ing values in Figure 2.

In addition, Table 1 presents the deviations compared tdasic model. Con-
cerning equity and senior tranches, the extreme specifiatif market dynamics
impact significantly on the premium payments. In line witk #conomic mecha-
nism discussed above, the low variance scenario causey sgueads to rise and
senior spreads to fall, whereas the high variance scemaplids reduced payments
on equity and heightened payments on senior notionals.eTtessilts can be sim-
ply explained by the different incidences of both positigengell as negative market
states. Due to its position in the capital structure, the zavine tranche exhibits
only a minimum response to the market dynamics, and consdyspread rates
also vary only slightly. In addition, if we focus on the rartpat comprises the sce-
narios between the 25% and 75% quantile of the logarithntiaemevariance, the
pricing impact occurs in the economically expected dimttbut, surprisingly, also
appears to be limited. This finding may potentially be asatito the tempered mar-
ket environment within the pre-crisis period, which caubesorresponding market
dynamics to be at a comparable level. However, given oullteesumore detailed
analysis of the pricing impact of market dynamics would séerne a worthwhile
objective of future research.

4.4 ldiosyncratic jumps

The jump part of our basic model captures solely the arrifafliscontinuous” in-
formation, such as political power changes, judicial deaisand so on, which com-
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Fig. 2:Implied correlation p; with respect to changes in market dynamics
The dashed curve refers to our basic model, whereas thedagenbols specify the
different equity dynamics. All values are quoted in percent

z |0% 25% 50% 75% 100%

&|54 1.2 06 29 6.1
€00 04 03 26 06
/66 1.1 00 07 51
€|7.3 1.8 05 03 6.1
€549 1.8 00 24 6.9

Table 1:Deviations of implied correlations caused by the use of difrent market
dynamics

z symbolizes the various quantiles of the terminal logarithreturn variance and
& denotes the deviation of the i-th tranche, whierel refers to the equity tranche,
i = 2 to the mezzanine tranche, etc..

monly affect the modeled asset values. Hence, a more geaygwedach comprises
the embedding of idiosyncratic jumps that depict sudden-§ipecific events, for
example, an unexpected change in the board of directoegyrating these jumps,
of course, entails the mutual dependences of the comparanuga to decline. Con-
sequently, equity spread rates are expected to rise, wheee#r rates are supposed
to fall.

To examine these suggestions, we include idiosyncratipguby adding the
compound Poisson process
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Na ()

Ch(t) = ZI (Vaj — 1) (25)

with jump intensityA} and independent jump variables, whose logarithmic values
again follow a double exponential distributidrzurthermore, we choose the jump
intensities to follow

A;“:p.)\a

. (26)
Aa=(1-p)-da, 0<p<1

and define _

Na = Na'=1a (27)
Assuming stochastic independence between the systenmatitha idiosyncratic
jump part, we obtain, in total, a compound process with jumerisity

P-Aat+(1=p)-Aa=Aq (28)

and jump parametear,. Hence, in terms of distribution, the jump part of our basic
and the present approach are identical. This can easilydmefsmm the characteris-
tic function of the compound Poisson proc€xs):

&g (u) = exp[m /R (¥ 1) f(x)dx} (29)

whereA denotes the jump intensity arfdx) the density of the jump distribution.
Due to the distributional equivalence, the present modekdwt have to be re-
calibrated, and one can simply adopt the default boundathebasic model. In
addition, the model implied spread rates of indices withrgtanaturities also re-
main unchanged because within this approach the choigedafes not affect the
term structure of losses.

In turn, this means that we can calibrate the model to rem®the quoted index
spread, but nevertheless have the flexibility to choose thighting of jumps. At
the limit p = 1, the proposed model coincides with the basic one, whegead
implies that there are no systematic jumps.

To analyze the impact of different levels pf we strobe the intervd0.8,0.0] by
steps of 2. The corresponding results are depicted in Figure 3, wihiglarticular
shows that across all tranches the choice afucially affects the implied correla-
tions. Due to the numerical decline of extreme events, gayuteads significantly
rise, whereas senior spreads almost vanish. As reportedtle 2, especially the
impact on the most senior tranche turns out to be very suliesitaim the case of
p = 0.2, as well ap = 0.0, the Gaussian model cannot reproduce the spread rates
of the mezzanine tranche implied by the model and, in additiodegeneration of
the smile pattern can be observed.

5 Analogous to our basic model, we restrict ourselves to the limafrmbst surely negative jumps.
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Fig. 3: Implied correlation p, with respect to the inclusion of idiosyncratic
jumps

The dashed curve refers to the basic model, whereas thadlsgerbols specify the
jump weightingp. All values are quoted in percent.

From a general perspective, these results imply that intiod) idiosyncratic
jumps does not necessarily yield a significant contributiicthe term structure prop-
erties of a dynamic model but may dramatically influence thieing of tranches.
This finding constitutes the main contribution of our papeparticular with respect
to the contemporary debate on the relative pricing of ecpuity credit derivatives.

p| 00 02 040608

£(20.117.113.0895.1
& - -1044017
£(15.9 125 946.4 33
£4(28.4 18.8 13.2 8.4 4.3
£5(41.3 21514284 4.4

Table 2:Deviations of implied correlations caused by the inclusiorof idiosyn-
cratic jumps
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Fig. 4: Comparison of relative loss term structuresi

The calculations refer to the one-factor Gaussian copuldei@ashed line), the
CJS model (solid line) and our basic approach (dotted lind)amprise the equity
(left-hand side) and the most senior tranche (right-hadeé)si

45 Term structure of tranche losses

According to the terms of contract, premium payments ofdnas always refer to
the remaining notional that has not been exhausted as aquarsee of portfolio
losses. In that regard, due to the absence of loss enhangeherequity tranche
exhibits maximum sensitivity to defaults in the portfolieor example, if a company
declares insolvency soon after contract release, theyelapiider immediately loses
% = 16% of his spread payments. By contrast, senior tranchesxpected to
suffer very low losses, and thus the explicit loss dynamicsuikl not significantly
affect risk premiums. An examination of the impact of loseayics is of particular
importance with respect to static models because withimtbéeling process one
has to fix generically the corresponding term structurethéncase of the standard
Gaussian model, the expected portfolio loss is assumedaotw gith a constant
hazard rate and thus according to the function

E(L)=1—e" (30)

Here, the hazard ratk is chosen so thdE (Lt) meets the desired level of loss at
maturity.

A further alternative to fixing generically the temporal Bit@mn of losses can
be seen from the source code published by.[8valuating tranche prices, they
assume linearly declining notionals. The term structurplied by our dynamic
model is based on the assumption that a company default®assdhe asset value
touches or deceeds a predefined default barrier. Basedsahtéshold, the portfolio
analysis can be conducted by applying Monte Carlo simuidgohniques, whereas

6 In the following, we use the abbreviation CJS.
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the results, among others, are used to determine the teuttsies of expected
losses implied by the model.

To compare the temporal evolution of losses across diftaranches, we have
to take into account that expected tranche losses are ofesatif scale. Hence, for
each tranche, we rescale the dynamics of losses by the egdest at maturity and
obtain modified loss curves that start at zero, increase moiually and take one
as their terminal value. Figure 4 shows the resulting temnctires for the equity
and the most senior tranche within the Gaussian, the CJSwaniobsic approach.
Concerning the equity tranche, the one-factor approachvshdfrontloaded” term
structure, whereas expected losses of the most seniohtramne “backloaded”. By
definition, within the CJS-model, tranche exposures dedlivearly over time. The
term structures of our basic approach have a similar shapdyath exhibit a convex
pattern.

To examine the impact of loss dynamics on the tranche sprieadsyeneral
setting, we substitute the first passage time dynamics by

L(V,,B(t) = fy(t) Lo (31)

where

f(t) = (%)y ve {1,2,1,2,4} (32)

v| i 312 4

&£(17.813.17.4201.9
£(19.1 9.74.8 1.6 0.3
&l 6.7 49281.00.3

&| 54 41251.00.1
&l 41 3.2211.00.2

Table 3:Deviations of implied correlations caused by applying vamus term
structures of tranche losses

Based on the chosen scenario, denoted,bye adopt the terminal tranche losses
offered by our basic model and evaluate the spread ratesibyilagp the polynomial
term structures. Furthermore, we back out implied cori@tatand calculate the
corresponding deviations to measure the effects on ourerefe scenario.

Moving fromy = 711 to y = 4, premium payments decline because losses tend to
occur later and, on average, the outstanding notionalsginet According to Table
3, the sensitivity of the single tranches decreases by rgavia capital structure
upwards. As economically expected and discussed abovdintirg of defaults
seriously impacts on the spread rates of equity and mezzdranches, whereas
senior tranches are less sensitive to the term structuterpafhese findings are
also displayed by Figure 5. Hence, the term structures skksnay significantly
affect premium payments of tranches, and in particular #reegc specification of
loss dynamics should be conducted carefully to avoid biassudlts.
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Fig. 5:Implied correlation p; with respect to the use of different loss dynamics
The dashed curve refers to the basic model, whereas thedegerbols specify the
generic loss scenarios. All values are quoted in percent.

4.6 Portfolio heterogeneity

Our basic model refers to a homogenous pool, which implias uhder the risk-

neutral measure all companies offer identical default dyina. On the one hand,
this assumption is quite a simplification, but on the othercha also enables an
analytical calibration of the portfolio model and thus emesuthe approach to be
highly applicable. The easiest way to analyze the impachisfassumption is to

split the portfolio into two parts that are homogenous byrikelves and offer spread
rates resembling the observed index spread.

s7|5 bps 15 bps 25 bps 35 bps

&g 103 56 22 03
& - 108 58 19
& 101 53 28 14
& 46 25 19 11
&l 35 26 19 11

Table 4:Deviations of implied correlations caused by introducing jrtfolio het-
erogeneity
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Here, we fix the homogenous spread rates;af= 63 companies to a certain level
sf and calculate the corresponding vahge)f the remaining, := 62 companies. In
this context, we follow [5, p. 270], who propose a pricingnfmia of a CDS index,
based purely on the properties of the pooled contracts. iRegvthis formula yields

n
& (s-)= o ($-9) (33)
The risky durationd, i = 1,2, is defined by
K
&i=Y e"(1- pe), tk=T (34)
K=1
where
phi=P(1 <t) (35)

Givens!, the corresponding default boundary can easily be evalu@iteback out
the default boundary of the second part, we use equési®n Again, due to the an-
alytically known first passage time distribution, we canfgen computations very
quickly and without bias. The calibration procedure thuedds two different default
barriers, which are used to specify the temporal evolutidh@portfolio as well as
the loss dynamics of tranches. Table 4 reports the corresppmumerical results.
The correlation smiles displayed in Figure 6 show a signifieapact of portfolio
heterogeneity, in particular with respect to the trancHdewer seniority. Figure 6
also shows that an amplification of the portfolio heteroggrentails a heightened
level of implied correlation.

Hence, the homogeneity assumption may imply downward Bisgeead rates of
senior tranches and also cause equity spreads which exveedtual level. As a
consequence, in the context of modeling multi-name deviest there should al-
ways be a pre-testing of the pooled entities to determindhvener not the homo-
geneity assumption constitutes a valid simplification.

5 Conclusion

In this article, we analyze the pricing of pre-crisis CDX.M3. tranches within a
structural dynamic approach. As expected, the mutual dkperies of asset value
dynamics, controlled by the weighting of idiosyncratic jpsnaffect spread rates at
most, whereas the choice of the term structure of lossesghssthe homogene-
ity assumption, particularly drive tranches of lower seityoDisregarding portfolio
heterogeneity also seems to imply systematically biassdltee Surprisingly, our
analysis additionally demonstrates a comparatively &chitmpact of market dy-
namics on the tranche spreads.
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Fig. 6:Implied correlation p; with respect to the integration of portfolio hetero-
geneity

The dashed curve refers to the basic model, whereas thedsgerbols specify the
different heterogeneity scenarios. All values are quatgakircent.

Of course, there are many issues left that were not coveredibgnalysis. This
is mainly reasoned by the fact that the proposed alteratimnshosen in such a way
as to ensure analytical tractability, at least at the simglme level. In this regard,
further research might, for example, deal with the impacgefieralizing model
scalars into random variables, which includes recovemsrat well as interest and
dividend rates. In addition, the default boundary couldiecgied as a function of
time and the heterogeneity of the pool might be accountedtfamore fine-grained
level. However, increasing model complexity always ineslthe danger of hidden
effects emerging, as clearly demonstrated in this article.
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