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Abstract We discuss the equity-based pricing of CDX tranches within astructural
dynamic approach and focus on the valuation impact of general model specifica-
tions. Therefore, we examine the influence of market dynamics, idiosyncratic jumps,
loss term structures and portfolio heterogeneity on the pricing of tranches. The re-
sulting spread deviations are quantified through implied correlations because this
scales premium payments across all tranches to a comparablelevel and, in addition,
enables reliable inferences on the meaning of the discussedmodel features.
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1 Introduction

The recent debate on the relative pricing of equity and credit risk markets (see [7, 8,
9, 14, 16]) raises the issue of the extent to which the appliedmodels themselves drive
the published results. In particular, this emerges all the more with respect to the large
variety of proposed models and corresponding findings. An initial way to address
this topic seems to be a comparison of different valuation techniques by referring
to a homogenous set of input data. However, this in fact failsbecause even within a
certain class of model type the number of parameters and model components turns
out to be significantly different. Concerning structural approaches, one might deal
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for example with static models, comprising only a sparse number of parameters (see
e.g. [8]), or adopt fully dynamic techniques with dozens of variables as in [7].

Because of these differences, we restrict ourselves to a structural dynamic ap-
proach and examine the impact of general model specifications on the pricing of
credit derivatives, such as the inclusion of idiosyncraticjumps. In this sense, we pro-
ceed similarly to [1], who quantify the effects of ignoring empirical regulatories on
the valuation of CDO tranches. Their aim, however, is different because they wish
to explain the appearance of the so-called correlation smile (see also [2, 11, 17]),
which proves the poor reliability of the standard one-factor Gaussian copula model.
In addition, all proposed techniques are of static nature, whereas our analysis refers
to a basic approach that already captures the most importantempirical phenomena
and thus serves as a reference for measuring the impact of general model specifica-
tions.

To set up the basic approach, we adopt the structural model recently proposed by
[10]. Using CAPM-like techniques, they introduce a simple dynamic model to over-
come the main disadvantages associated with purely diffusion-based techniques. In
addition to a component that depicts continuous changes, they also include jumps
to capture discontinuous information. Hence, our basic model contains the most im-
portant characteristics that, according to [7], a reliableapproach should offer. Firstly,
it is intended to be fully dynamic, which is accomplished by definition because we
are dealing with a time-continuous stochastic process. Secondly, the model must
not be exclusively based on a diffusion motion because this leads to the so-called
predictability of default, and thus short-time spreads become vanishingly low (see
e.g. [19]). Due to the presence of jumps, our approach is not in danger of exhibiting
these disadvantages.

To quantify the impact of different model specifications, wecompare the corre-
sponding risk premiums to those of our basic approach. However, the spread rates of
different tranches are generally of a different scale, and thus, if measured in absolute
values, slight deviations in the equity tranche acquire much more weight than large
deviations within the senior tranches. To avoid such effects, we adopt the concept of
implied correlations because, as a consequence, quotes areof the same magnitude
and spread deviations become comparable. Thus, we evaluatethe deviations with
respect to our basic model and report the pricing effect of model changes in terms
of implied correlations.

The proposed model changes are chosen in such a way as to preserve the analyti-
cal tractability of the different approaches. For example,we add idiosyncratic jumps
to the asset value process. Analogously to the idiosyncratic diffusion motion, these
depict changes in firm value that are not influenced by the macroeconomic dynamics
but reflect information causing discontinuous movements. Acrucial topic within our
analysis is the weight we assign to these idiosyncratic jumps because this directly
influences the magnitude of correlation among the assets in the modeled reference
pool. Correlation matters, because it affects the terminalloss distribution of the port-
folio, which in turn influences tranche prices. For example,if there is a significant
number of scenarios in which the portfolio loss is close to zero, the equity tranche
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can survive, at least in part. Hence, the spread rates of equity tranches decrease. For
senior tranches, things are different. Increasing the probability of extreme losses
entails the eventuality of subordinated capital being wiped out completely and also
senior tranches getting hit. Because spread rates reflect expected losses, premium
payments have to increase. A decreasing correlation reduces the incidence of ex-
treme events and the loss distribution becomes more centered. As a consequence,
equity tranches often suffer substantial losses and have tooffer high spread pay-
ments. Conversely, senior tranches are hit sparsely and thus only have to yield low
premiums on the notional.

However, if the correlation were the only quantity determining tranche prices,
dynamic models would not yield significant advantages in thecontext of model-
ing credit derivatives because terminal distributions arealso specified by propos-
ing static models. Yet, static models have a tremendous disadvantage: they cannot
describe the evolution of portfolio loss dynamics over time. Yet, these are also es-
sential to evaluate the loss dynamics of tranches. The temporal growth of tranche
losses affects the spread rate of a tranche because spread payments always refer to
the remaining notional. If tranches are likely to suffer early losses, spread rates have
to rise in return for missed payments. Senior tranches are expected to have very low
losses, and therefore the explicit loss dynamics should notsignificantly influence
the associated premiums. This changes, however, as one moves through the capital
structure down to the equity tranche. Due to its position, this exhibits maximum
sensitivity to early defaults in the portfolio. This motivates our quantitative analy-
sis, which determines the extent to which loss dynamics in the underlying portfolio
influence tranche prices.

Besides idiosyncratic jumps and loss dynamics, there are two more topics we
wish to discuss in the course of this paper, namely the meaning of market return
dynamics and the homogeneity assumption. Whereas there is nodoubt about the
influence of equity dynamics, a clear economic theory on the impact of the homo-
geneity assumption is missing. Therefore, our empirical analysis is also intended to
yield new insights into this topic.

Accordingly, the remainder of the paper is organized as follows. In Section 2, we
provide a brief overview of credit derivatives and some details on the correlation
smile. The mathematics of the market as well as the asset value dynamics are dis-
cussed in Section 3. In the context of the model analysis presented in Section 4,
we quantify the impacts of the proposed model changes. A conclusion is given in
Section 5.
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2 Credit derivatives and correlation smile

2.1 Credit derivatives

2.1.1 CDS indices

Analogous to equity indices, comprising a certain number ofstocks, CDS in-
dices represent a portfolio of credit default swap contracts. In the empirical sec-
tion of this article, we focus on the CDX North American Investment Grade index
(CDX.NA.IG), which aggregates 125 equally weighted CDS contracts, each written
on a North American investment grade name. There are severalmaturities of this
index, namely 1, 2, 3, 4, 5, 7 and 10 years, whereby the contract with the five-year
horizon offers the highest degree of liquidity. The CDX.NA.IG is revised every six
months on March 20 and September 20, the so-called roll dates. On these dates,
both defaulted as well as illiquid names are replaced. Similar to a CDS contract, the
issuer (protection buyer) has to pay quarterly spread premiums to the investor (pro-
tection seller). In the case of default, the latter is obliged to render compensation
for the loss caused by the defaulted company. In general, this loss, also referred to
as Loss Given Default (LGD), is a firm-specific, stochastic variable. For reasons of
simplicity, here we fix the LGD to the standard value of 0.6. As a further conse-
quence of default, the notional value of the contract is reduced by a factor of 1

125,
disregarding the actual loss. In a risk-neutral environment, the spread rate of this
contract is given by

si :=
LGD ·∑n

i=1 ∑m
j=1 e−rt j ·P

(

t j−1 < τi ≤ t j
)

∑n
i=1 ∑m

j=1 ∆ j · e−rt j ·P(τi > t j)
(1)

Here, ∆ j := t j − t j−1 denotes the time period between two subsequent payment
dates,r the risk-free interest rate andτi the default time of reference namei.

2.1.2 Index tranches

By dividing their capital structure, CDS indices are also used to create structured
finance securities, called index tranches. These tranches induce a vertical capital
structure on the index and are specified by the covered loss range. A tranche be-
gins to suffer losses as the portfolio lossLt exceeds the attachment pointα, and its
notional is completely wiped out if the portfolio loss increases beyond the detach-
ment pointβ . For example, the CDX.NA.IG has the tranches 0-3% (equity),3-7%
(mezzanine), 7–10%, 10–15%, 15–30% (senior) and 30–100% (super-senior). The
spread rate of a tranche is given by
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sα ,β :=
∑m

j=1 e−rt j ·
[

E

(

L
t j

α ,β

)

−E

(

L
t j−1
α ,β

)]

∑m
j=1 ∆ j · e−rt j ·

[

1−E

(

L
t j

α ,β

)] (2)

where the loss profile of a tranche follows

Lt
α ,β :=

min(β ,Lt)−min(α,Lt)

β −α
(3)

2.2 Correlation smiles

In the context of modeling credit derivatives, the one-factor Gaussian copula model
is similar to the Black-Scholes approach for the pricing of options. Hence, it does
not come as a surprise that there is also a phenomenon, calledthe correlation smile,
that corresponds to the empirically observed volatility smile.

2.2.1 Volatility Smile

The famous Black-Scholes pricing formula owes its popularity mainly to the fact
that, based on the intuitive Brownian motion, [4] elaborated an analytical formula
for the pricing of European options, including the contemporary stock priceS0, the
strike levelK, the maturityT , the interest rater and the volatilityσ of the under-
lying asset. WhereasS0, K, T andr are explicitly observable quantities or param-
eters characterizing the proposed contract, the volatility can, at best, be estimated.
In turn, only the volatility parameter is available to control the results within the
Black-Scholes model. Given the market price of a completelyspecified European
option, one can fit the Black-Scholes model to this quote by choosing the (unique)
volatility that yields the desired value. If the Black-Scholes model could completely
describe market dynamics, all the (implied) volatilities would be identical across
different maturities and strike levels. Yet, these volatilities are not generally con-
stant but yield patterns that resemble smiles or skews if plotted against the strike
level or maturity. This suggests that the Black-Scholes model is not suited to repli-
cate option prices. However, the general popularity of thismodel is testified by the
fact that it is market convention to quote option prices in terms of implied volatility.
This fictive number, placed in the “wrong” Black-Scholes formula, by construction
reveals the predefined value and therefore offers an alternative way to report prices
of options.
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2.2.2 Correlation Smile

Within the Gaussian model, there are only two parameters that can be used to control
the model’s features, namely the default barrierD̃ and the homogenous asset return
correlationρ . It is a general convention to fix the default barrier such that the model
spread matches the empirically observed index spread. As a consequence,ρ is the
only parameter affecting tranche prices, and the market spread of a fixed tranche is
replicated by evaluating the level of the generic or impliedcorrelation that yields
this spread. For a given set of tranche prices on an arbitraryday, this procedure
is expected to reveal five different correlations.1 The resulting confliction can be
resolved simply by realizing that the one-factor Gaussian copula model does not
offer a reliable description of the pooled assets (see e.g. [20]). However, analogous
to the Black-Scholes model, the Gaussian approach also offers an analytical formula
for the valuation of tranches2, which in turn explains its popularity and the fact that
tranche spreads are also quoted in terms of implied correlations.

3 Asset value dynamics

3.1 General model features

With respect to our basic asset pool model, we specify the firmvalue dynamics to
satisfy the stochastic differential equation stated by [12]:

dA(t)
A(t−)

= (r−λaζa)dt +σadBa(t)+d

[

Nm
a (t)

∑
i=1

(Va,i −1)

]

(4)

Hence, three basic components control the evolution of a company’s asset value re-
turn: the drift component, the diffusion motion and the jumppart. The drift rate is
specified by(r−λaζa), which contains the risk-free interest rate as well as the com-
pensator that accounts for the expected drift caused by the jump process. Continu-
ously occurring changes are depicted by the Brownian diffusion σaBa(t). The jump
part specifies systematic jumps to which all companies are exposed. The number of
these jumps is denoted byNm

a (t) and follows a Poisson process with the intensity
λa. The random numberVa,i, i ∈ {1, ...,Nm

a (t)} , is characterized by the density of
its logarithmic version

Ya,i := ln(Va,i) (5)

that follows an asymmetric double exponential distribution:

fYa,i(y) = p ·η1e−η1y1y≥0+q ·η2eη2y1y<0, η1 > 1, η2 > 0 (6)

1 Super-senior tranches of the pre-crisis CDX.NA.IG are commonlyassumed to be (almost) risk-
less and thus omitted from our analysis.
2 For technical details, we refer interested readers to [18].
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Therefore,p,q ≥ 0, p+ q = 1, define the conditional probabilities of upward and
downward jumps. BecauseNm

a (t) andVa,i are stochastically independent, the pro-
cess

Cm
a (t) :=

Nm
a (t)

∑
i=1

(Va,i −1) (7)

is a compound Poisson process, with expectation

E [Cm
a (t)] = λat

(

pη1

η1−1
+

qη2

η2+1
−1

)

(8)

Performing calculations in the context of exponential Lévy models, one generally
refers to logarithmic returns because these can be treated more easily. Applying It̂o’s
Lemma to

X(t) := ln [A(t)] (9)

yields

X(t) =

(

r−
σ2

a

2
−λaζa

)

t +σaBa(t)+
Nm

a (t)

∑
i=1

Ya,i (10)

Without loss of generality, we assumeA0 = 0, and hence the logarithmic returnX(t)
is given by a standard Ĺevy process that comprises continuous as well as discontin-
uous movements.

3.2 First passage time distribution

In modeling credit risk, dynamic approaches are usually specified as first passage
time models. This concept was introduced by [3] and accountsfor the fact that a
company can default at any time during the credit period. A default is triggered
the moment the asset value touches or crosses some predefineddefault boundary,
which represents the company’s level of liabilities. The first passage timeτ is de-
fined mathematically as follows:

τ := inf {t|At ≤ D}= inf {t|Xt ≤ b} (11)

Here,D denotes the default barrier andb its logarithmic version. Because in our
model setting the loss dynamics are determined solely by thedefault dynamics, the
distribution of the first passage time, according to(2), is crucial.

There are only a few types of processes that offer an analytically known distribu-
tion of τ. For example, this pertains to the standard Brownian motionand spectrally
negative Ĺevy processes. The Kou model applied in this paper also features an ana-
lytically known distribution of the first passage time, as formulated by [13] and [15].
For a comprehensive summary of the (technical) details, we refer interested readers
to [18].
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The analytical nature of the proposed first passage time model enables a very
fast (numerical) determination of loss dynamics and, basedon these, the company’s
spread rate. In turn, given a quoted spread rate, the calibration of a homogenous pool
can be conducted by a numerical optimization algorithm, dueto the linearity of the
expectation operator. If there were no analytically known distribution, calibration
would have to be done by simulation techniques, which, despite the rapid growth of
computational power, are still very time-consuming and also may potentially yield
biased results. This especially appears over the course of extended time periods as
well as processes with jumps ([6, 13]). Therefore, the analyticity of our modeling
approach, enabling unbiased and fast evaluations at firm andportfolio level, consti-
tutes a major advantage of the presented approach.

3.3 Integration of market risk

3.3.1 Modeling equity dynamics

Besides analytical knowledge about the first passage time distribution, there is an-
other important feature of the Kou model, namely the closed-form option-pricing
formula. Extending the classical Black-Scholes approach,[12] calculated an ex-
plicit pricing function for European options where the underlying equity dynamics
are given by

dS(t)
S(t−)

= (r−λsζs)dt +σsdBs(t)+d

[

Ns(t)

∑
i=1

(Vs,i −1)

]

(12)

Analogous to the asset value model, the random numberVs,i, i ∈ {1, ...,Ns(t)}, is
characterized by the density of its logarithmic version

Ys,i := ln(Vs,i) (13)

that also exhibits an asymmetric double exponential distribution:

fYs,i(y) = p ·ξ1e−ξ1y1y≥0+q ·ξ2eξ2y1y<0, ξ1 > 1, ξ2 > 0 (14)

Hence, the priceC (K,T ) of a European call option written on an equity asset that
follows (12) can be evaluated as a function of the strike levelK and the maturity
T :3

C (K,T ) =ϒ
(

r+
1
2

σ2
s −λsζs,σs, λ̃s, p̃, ξ̃1, ξ̃2; ln(K) ,T

)

−K exp(−rT ) ·ϒ
(

r−
1
2

σ2
s −λsζs,σs,λs, p,ξ1,ξ2; ln(K) ,T

) (15)

3 The explicit functional dependence is stated in [18].
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where

p̃ =
p

1+ζs
·

ξ1

ξ1−1
, ξ̃1 = ξ1−1, ξ̃2 = ξ2+1, λ̃s = λs (ζs +1) (16)

If we specifyS(t) to reflect the dynamics of an equity index, for example the S&P
500, and use this index as a proxy for the market dynamics, thelogarithmic market
returns are also given by a double exponential jump-diffusion process. By calibrat-
ing these equity dynamics to market data, given a fixedσs, we can ascertain the
unknown parameter values of the jump part. Following [10], we chooseσs = 0.1.

3.3.2 Coupling equity and asset dynamics

In our asset value model, the diffusion parameterσa, as well asλa, are used to
set up the coupling between market and asset dynamics. This coupling reflects the
notion that companies are exposed to both market and idiosyncratic risks. Whereas
market risk simultaneously influences the evolution of all companies in a portfolio,
idiosyncratic risks independently affect firm values. Adopting this basic idea of the
CAP-model, we specify the asset value diffusion to follow the market diffusion up
to a factorβ . Additionally, we introduce an independent Brownian motion Bi

a to
depict the continuous evolution of idiosyncratic risk. Thus, the asset value diffusion
is given by

σaBa = βσsBs +σ i
aBi

a ∼ N
(

0,σ2
a

)

(17)

Here, we made use of the fact that the superposition of independent Brownian mo-
tions again turns out to be Brownian.

With respect to the jump part of our firm value model, we apply the parametersλs

andξs to specify the corresponding asset value dynamics. Due to the fact that jumps
in the firm value are caused exclusively by jumps in the equityprocess, we fix the
jump rateλa to be equal toλs. However, the jump distribution must be different
because within our approach the level of debt is assumed to beconstant, which
in turn reduces the effects of discontinuous movements in the market value. We
account for this fact by adopting theβ factor introduced above and define

Ya,i := β ·Ys,i (18)

Applying the transformation formula, it is easy to show thatthis way of proceeding
preserves the distribution characteristic and thus provesto be consistent with the
given firm value dynamics. Furthermore, the distribution parameter ofYa,i can be
evaluated as follows:

ηa =
1
β

ξs (19)

reflecting, on average, the damped amplitude of jumps. For reasons of simplicity,
we restrict ourselves to the limiting case ofq = 1, concerning both asset and equity
dynamics. Thus, we defineηa := η2 andξs := ξ2.
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4 Model changes and correlation smiles

4.1 Data description

The database for our analysis relies primarily on quotes that were offered in addition
to the publication of [8] and are available at the webpage of the publishing journal.
These quotes comprise data on five-year S&P 500 index options, spread rates of
the five-year CDX.NA.IG and associated tranches as well as time-congruent swap
rates. The swap rates are also offered by www.swap-rates.com and used as risk-free
interest rates. The time series cover the period from September 22, 2004 to Septem-
ber 19, 2007, which corresponds exactly to the duration period of the CDX.NA.IG
Series 3 through Series 8. In addition, the data on S&P 500 index options provide
daily information on option prices with respect to 13 different strike levels and also
report the time series of the S&P 500 index level.

4.2 Basic model

For the purpose of calibrating our basic model, we utilize prices of S&P 500 index
options and spread rates of the five-year CDX.NA.IG that wereobserved on Febru-
ary 6, 2006. We choose this date because within our analysis we wish to analyze the
pricing impact of model changes with respect to a common market environment.4

On average, the pre-crisis spread rate of the five-year CDX.NA.IG can be calculated
to about 45 bps (the exact mean value amounts to 45.87 bps), which, for example,
was the market quote on February 6, 2006. In addition, this date is also located in
the center of our time series.

To calibrate our market model, we must back out the optimal value of (λs,ξs).
Because all the other input variables required for the pricing of options are known,
namely the contemporary index level, strike price, interest rate and maturity, we
perform a numerical optimization procedure that minimizesthe sum of in-sample
quadratic pricing errors:

E (λs,ξs) :=
13

∑
i=1

[

P̃i (λs,ξs)−Pi
]2

(20)

whereP̃i denotes the model price andPi the corresponding empirical value. As a
result of this procedure, we obtain

(λs,ξs)opt := (0.125,2.91) (21)

which is used to determine the model implied volatility skewshown by the solid
line in Figure 1. This curve, as well as the market-implied volatilities, marked by

4 According to [7] and [8], we specify Series 3 through 8 to represent the pre-crisis period.
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Fig. 1: Implied volatility σI of the market model
The solid line shows the resulting function extracted from five-year S&P 500 index
option prices (marked by the crosses). All values are quotedin percent.

the crosses, are plotted against the moneyness levelm, which we define by

m :=
K
S0

(22)

On average, the relative pricing error amounts to 0.30%, which emphasizes the
high fitting quality of the chosen market model, relying onlyon two degrees of free-
dom. Concerning the pool model, we chooseβ = 0.5 andσa = 0.2 to capture the
main results of a corresponding survey performed by [7]. In this regard, the sparse
number of parameters constitutes a further advantage of ourapproach because be-
sides(λs,ξs)opt we only have to determine the logarithmic default boundaryb. This
can be done by evaluating the (unique) zero of

sm
i (b)− se

i (23)

wheresm
i denotes the model implied spread rate andse

i the empirically observed
index spread of the CDX.NA.IG on February 6, 2006. A simple numerical procedure
yieldsb =−1.141, which completes our setup.

4.3 Market dynamics

The basic concept of our pricing model refers to the notion that the common dynam-
ics of asset values are affected only by the temporal evolution of the corresponding
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equity market. In this context, predefined changes in the market dynamics are in-
tended to have a similar impact on the model implied spread rates. If, for example,
the risk neutral probability of negative market states increases, premium payments
on senior tranches are supposed to rise. By contrast, if option prices imply a signif-
icant incidence of positive market states, equity spreads are expected to fall.

Here, we analyze the pricing impact of market dynamics by adopting the couples
of jump parameters that imply the minimum and maximum as wellas the 25%, 50%
and 75% quantile of the terminal logarithmic return variance in our time series:

V [ln(ST )] = σ2
s T +2

λT
ξ 2

s
(24)

We use the resulting parameters to specify our asset value model (besides the de-
fault boundary, we keep all the other parameters fixed) and perform a recalibration
to match the target value of 45 bps. Accordingly, a further advantage of our mod-
eling approach emerges. Given the numerically determined default barrier, we can
prove the reliability of simulated tranche spreads becausethe applied Monte Carlo
techniques must also yield the desired index level. Otherwise, computational efforts
have to be increased to avoid biased results. We use the modeled spread rates to
back out the implied correlations within the Gaussian modeland depict the result-
ing values in Figure 2.

In addition, Table 1 presents the deviations compared to ourbasic model. Con-
cerning equity and senior tranches, the extreme specifications of market dynamics
impact significantly on the premium payments. In line with the economic mecha-
nism discussed above, the low variance scenario causes equity spreads to rise and
senior spreads to fall, whereas the high variance scenario implies reduced payments
on equity and heightened payments on senior notionals. These results can be sim-
ply explained by the different incidences of both positive as well as negative market
states. Due to its position in the capital structure, the mezzanine tranche exhibits
only a minimum response to the market dynamics, and consequently spread rates
also vary only slightly. In addition, if we focus on the rangethat comprises the sce-
narios between the 25% and 75% quantile of the logarithmic return variance, the
pricing impact occurs in the economically expected direction, but, surprisingly, also
appears to be limited. This finding may potentially be ascribed to the tempered mar-
ket environment within the pre-crisis period, which causesthe corresponding market
dynamics to be at a comparable level. However, given our results, a more detailed
analysis of the pricing impact of market dynamics would seemto be a worthwhile
objective of future research.

4.4 Idiosyncratic jumps

The jump part of our basic model captures solely the arrival of “discontinuous” in-
formation, such as political power changes, judicial decisions and so on, which com-
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Fig. 2: Implied correlation ρI with respect to changes in market dynamics
The dashed curve refers to our basic model, whereas the legend symbols specify the
different equity dynamics. All values are quoted in percent.

z 0% 25% 50% 75% 100%

ε1 5.4 1.2 0.6 2.9 6.1
ε2 0.0 0.4 0.3 2.6 0.6
ε3 6.6 1.1 0.0 0.7 5.1
ε4 7.3 1.8 0.5 0.3 6.1
ε5 4.9 1.8 0.0 2.4 6.9

Table 1:Deviations of implied correlations caused by the use of different market
dynamics
z symbolizes the various quantiles of the terminal logarithmic return variance and
εi denotes the deviation of the i-th tranche, wherei = 1 refers to the equity tranche,
i = 2 to the mezzanine tranche, etc..

monly affect the modeled asset values. Hence, a more generalapproach comprises
the embedding of idiosyncratic jumps that depict sudden firm-specific events, for
example, an unexpected change in the board of directors. Integrating these jumps,
of course, entails the mutual dependences of the company dynamics to decline. Con-
sequently, equity spread rates are expected to rise, whereas senior rates are supposed
to fall.

To examine these suggestions, we include idiosyncratic jumps by adding the
compound Poisson process
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Ci
a(t) =

Ni
a(t)

∑
i=1

(Va,i −1) (25)

with jump intensityλ i
a and independent jump variables, whose logarithmic values

again follow a double exponential distribution.5 Furthermore, we choose the jump
intensities to follow

λ m
a = ρ ·λa

λ i
a = (1−ρ) ·λa, 0≤ ρ ≤ 1

(26)

and define
ηm

a := η i
a := ηa (27)

Assuming stochastic independence between the systematic and the idiosyncratic
jump part, we obtain, in total, a compound process with jump intensity

ρ ·λa +(1−ρ) ·λa = λa (28)

and jump parameterηa. Hence, in terms of distribution, the jump part of our basic
and the present approach are identical. This can easily be seen from the characteris-
tic function of the compound Poisson processC(t):

ΦCt (u) = exp

[

λ t
∫

R

(

eiux −1
)

f (x)dx

]

(29)

whereλ denotes the jump intensity andf (x) the density of the jump distribution.
Due to the distributional equivalence, the present model does not have to be re-
calibrated, and one can simply adopt the default boundary ofthe basic model. In
addition, the model implied spread rates of indices with shorter maturities also re-
main unchanged because within this approach the choice ofρ does not affect the
term structure of losses.

In turn, this means that we can calibrate the model to reproduce the quoted index
spread, but nevertheless have the flexibility to choose the weighting of jumps. At
the limit ρ = 1, the proposed model coincides with the basic one, whereasρ = 0
implies that there are no systematic jumps.

To analyze the impact of different levels ofρ , we strobe the interval[0.8,0.0] by
steps of 0.2. The corresponding results are depicted in Figure 3, whichin particular
shows that across all tranches the choice ofρ crucially affects the implied correla-
tions. Due to the numerical decline of extreme events, equity spreads significantly
rise, whereas senior spreads almost vanish. As reported in Table 2, especially the
impact on the most senior tranche turns out to be very substantial. In the case of
ρ = 0.2, as well asρ = 0.0, the Gaussian model cannot reproduce the spread rates
of the mezzanine tranche implied by the model and, in addition, a degeneration of
the smile pattern can be observed.

5 Analogous to our basic model, we restrict ourselves to the limit ofalmost surely negative jumps.
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Fig. 3: Implied correlation ρI with respect to the inclusion of idiosyncratic
jumps
The dashed curve refers to the basic model, whereas the legend symbols specify the
jump weightingρ . All values are quoted in percent.

From a general perspective, these results imply that introducing idiosyncratic
jumps does not necessarily yield a significant contributionto the term structure prop-
erties of a dynamic model but may dramatically influence the pricing of tranches.
This finding constitutes the main contribution of our paper,in particular with respect
to the contemporary debate on the relative pricing of equityand credit derivatives.

ρ 0.0 0.2 0.4 0.6 0.8

ε1 20.1 17.1 13.0 8.9 5.1
ε2 - - 10.4 4.0 1.7
ε3 15.9 12.5 9.4 6.4 3.3
ε4 28.4 18.8 13.2 8.4 4.3
ε5 41.3 21.5 14.2 8.4 4.4

Table 2:Deviations of implied correlations caused by the inclusionof idiosyn-
cratic jumps
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Fig. 4:Comparison of relative loss term structuresL̃t

The calculations refer to the one-factor Gaussian copula model (dashed line), the
CJS model (solid line) and our basic approach (dotted line) and comprise the equity
(left-hand side) and the most senior tranche (right-hand side).

4.5 Term structure of tranche losses

According to the terms of contract, premium payments of tranches always refer to
the remaining notional that has not been exhausted as a consequence of portfolio
losses. In that regard, due to the absence of loss enhancement, the equity tranche
exhibits maximum sensitivity to defaults in the portfolio.For example, if a company
declares insolvency soon after contract release, the equity holder immediately loses

0.6
125·0.03 = 16% of his spread payments. By contrast, senior tranches areexpected to
suffer very low losses, and thus the explicit loss dynamics should not significantly
affect risk premiums. An examination of the impact of loss dynamics is of particular
importance with respect to static models because within themodeling process one
has to fix generically the corresponding term structures. Inthe case of the standard
Gaussian model, the expected portfolio loss is assumed to grow with a constant
hazard rate and thus according to the function

E(Lt) = 1− e−λ t (30)

Here, the hazard rateλ is chosen so thatE(LT ) meets the desired level of loss at
maturity.

A further alternative to fixing generically the temporal evolution of losses can
be seen from the source code published by [8]6. Evaluating tranche prices, they
assume linearly declining notionals. The term structure implied by our dynamic
model is based on the assumption that a company defaults as soon as the asset value
touches or deceeds a predefined default barrier. Based on this threshold, the portfolio
analysis can be conducted by applying Monte Carlo simulation techniques, whereas

6 In the following, we use the abbreviation CJS.
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the results, among others, are used to determine the term structures of expected
losses implied by the model.

To compare the temporal evolution of losses across different tranches, we have
to take into account that expected tranche losses are of a different scale. Hence, for
each tranche, we rescale the dynamics of losses by the expected loss at maturity and
obtain modified loss curves that start at zero, increase monotonically and take one
as their terminal value. Figure 4 shows the resulting term structures for the equity
and the most senior tranche within the Gaussian, the CJS and our basic approach.
Concerning the equity tranche, the one-factor approach shows a “frontloaded” term
structure, whereas expected losses of the most senior tranche are “backloaded”. By
definition, within the CJS-model, tranche exposures decline linearly over time. The
term structures of our basic approach have a similar shape, and both exhibit a convex
pattern.

To examine the impact of loss dynamics on the tranche spreadsin a general
setting, we substitute the first passage time dynamics by

Lγ
α ,β (t) = fγ(t) ·L

T
α ,β (31)

where

fγ(t) :=
( t

T

)γ
, γ ∈

{

1
4
,
1
2
,1,2,4

}

(32)

γ 1
4

1
2 1 2 4

ε1 17.8 13.1 7.4 2.0 1.9
ε2 19.1 9.7 4.8 1.6 0.3
ε3 6.7 4.9 2.8 1.0 0.3
ε4 5.4 4.1 2.5 1.0 0.1
ε5 4.1 3.2 2.1 1.0 0.2

Table 3:Deviations of implied correlations caused by applying various term
structures of tranche losses

Based on the chosen scenario, denoted byγ, we adopt the terminal tranche losses
offered by our basic model and evaluate the spread rates by applying the polynomial
term structures. Furthermore, we back out implied correlations and calculate the
corresponding deviations to measure the effects on our reference scenario.

Moving from γ = 1
4 to γ = 4, premium payments decline because losses tend to

occur later and, on average, the outstanding notionals are higher. According to Table
3, the sensitivity of the single tranches decreases by moving the capital structure
upwards. As economically expected and discussed above, thetiming of defaults
seriously impacts on the spread rates of equity and mezzanine tranches, whereas
senior tranches are less sensitive to the term structure pattern. These findings are
also displayed by Figure 5. Hence, the term structures of losses may significantly
affect premium payments of tranches, and in particular the generic specification of
loss dynamics should be conducted carefully to avoid biasedresults.
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Fig. 5: Implied correlation ρI with respect to the use of different loss dynamics
The dashed curve refers to the basic model, whereas the legend symbols specify the
generic loss scenarios. All values are quoted in percent.

4.6 Portfolio heterogeneity

Our basic model refers to a homogenous pool, which implies that under the risk-
neutral measure all companies offer identical default dynamics. On the one hand,
this assumption is quite a simplification, but on the other hand it also enables an
analytical calibration of the portfolio model and thus ensures the approach to be
highly applicable. The easiest way to analyze the impact of this assumption is to
split the portfolio into two parts that are homogenous by themselves and offer spread
rates resembling the observed index spread.

sp
1 5 bps 15 bps 25 bps 35 bps

ε1 10.3 5.6 2.2 0.3
ε2 - 10.8 5.8 1.9
ε3 10.1 5.3 2.8 1.4
ε4 4.6 2.5 1.9 1.1
ε5 3.5 2.6 1.9 1.1

Table 4:Deviations of implied correlations caused by introducing portfolio het-
erogeneity
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Here, we fix the homogenous spread rates ofn1 := 63 companies to a certain level
sp
1 and calculate the corresponding valuesp

2 of the remainingn2 := 62 companies. In
this context, we follow [5, p. 270], who propose a pricing formula of a CDS index,
based purely on the properties of the pooled contracts. Rewriting this formula yields

δ2 ·
(

si − sp
2

)

=
n1

n2
·δ1 ·

(

sp
1 − si

)

(33)

The risky durationδi, i = 1,2, is defined by

δi :=
K

∑
k=1

e−rti
(

1− ptk
i

)

, tK = T (34)

where
pt

i := P(τi ≤ t) (35)

Givensp
1, the corresponding default boundary can easily be evaluated. To back out

the default boundary of the second part, we use equation(33). Again, due to the an-
alytically known first passage time distribution, we can perform computations very
quickly and without bias. The calibration procedure thus yields two different default
barriers, which are used to specify the temporal evolution of the portfolio as well as
the loss dynamics of tranches. Table 4 reports the corresponding numerical results.
The correlation smiles displayed in Figure 6 show a significant impact of portfolio
heterogeneity, in particular with respect to the tranches of lower seniority. Figure 6
also shows that an amplification of the portfolio heterogeneity entails a heightened
level of implied correlation.

Hence, the homogeneity assumption may imply downward biased spread rates of
senior tranches and also cause equity spreads which exceed the actual level. As a
consequence, in the context of modeling multi-name derivatives, there should al-
ways be a pre-testing of the pooled entities to determine whether or not the homo-
geneity assumption constitutes a valid simplification.

5 Conclusion

In this article, we analyze the pricing of pre-crisis CDX.NA.IG tranches within a
structural dynamic approach. As expected, the mutual dependencies of asset value
dynamics, controlled by the weighting of idiosyncratic jumps, affect spread rates at
most, whereas the choice of the term structure of losses, as well as the homogene-
ity assumption, particularly drive tranches of lower seniority. Disregarding portfolio
heterogeneity also seems to imply systematically biased results. Surprisingly, our
analysis additionally demonstrates a comparatively limited impact of market dy-
namics on the tranche spreads.
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Fig. 6:Implied correlation ρI with respect to the integration of portfolio hetero-
geneity
The dashed curve refers to the basic model, whereas the legend symbols specify the
different heterogeneity scenarios. All values are quoted in percent.

Of course, there are many issues left that were not covered byour analysis. This
is mainly reasoned by the fact that the proposed alterationsare chosen in such a way
as to ensure analytical tractability, at least at the single-name level. In this regard,
further research might, for example, deal with the impact ofgeneralizing model
scalars into random variables, which includes recovery rates as well as interest and
dividend rates. In addition, the default boundary could be specified as a function of
time and the heterogeneity of the pool might be accounted forat a more fine-grained
level. However, increasing model complexity always involves the danger of hidden
effects emerging, as clearly demonstrated in this article.
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